295 research outputs found

    Why It Takes So Long to Connect to a WiFi Access Point

    Full text link
    Today's WiFi networks deliver a large fraction of traffic. However, the performance and quality of WiFi networks are still far from satisfactory. Among many popular quality metrics (throughput, latency), the probability of successfully connecting to WiFi APs and the time cost of the WiFi connection set-up process are the two of the most critical metrics that affect WiFi users' experience. To understand the WiFi connection set-up process in real-world settings, we carry out measurement studies on 55 million mobile users from 44 representative cities associating with 77 million APs in 0.40.4 billion WiFi sessions, collected from a mobile "WiFi Manager" App that tops the Android/iOS App market. To the best of our knowledge, we are the first to do such large scale study on: how large the WiFi connection set-up time cost is, what factors affect the WiFi connection set-up process, and what can be done to reduce the WiFi connection set-up time cost. Based on the measurement analysis, we develop a machine learning based AP selection strategy that can significantly improve WiFi connection set-up performance, against the conventional strategy purely based on signal strength, by reducing the connection set-up failures from 33%33\% to 3.6%3.6\% and reducing 80%80\% time costs of the connection set-up processes by more than 1010 times.Comment: 11pages, conferenc

    Trends in Machine Learning and Electroencephalogram (EEG): A Review for Undergraduate Researchers

    Full text link
    This paper presents a systematic literature review on Brain-Computer Interfaces (BCIs) in the context of Machine Learning. Our focus is on Electroencephalography (EEG) research, highlighting the latest trends as of 2023. The objective is to provide undergraduate researchers with an accessible overview of the BCI field, covering tasks, algorithms, and datasets. By synthesizing recent findings, our aim is to offer a fundamental understanding of BCI research, identifying promising avenues for future investigations.Comment: 14 pages, 1 figure, HCI International 2023 Conferenc

    Imaging of brain function based on the analysis of functional connectivity - imaging analysis of brain function by fMRI after acupuncture at LR3 in healthy individuals

    Get PDF
    Objective: This Study observed the relevant brain areas activated by acupuncture at the Taichong acupoint (LR3) and analyzed the functional connectivity among brain areas using resting state functional magnetic resonance imaging (fMRI) to explore the acupoint specificity of the Taichong acupoint.Methods: A total of 45 healthy subjects were randomly divided into the Taichong (LR3) group, sham acupuncture group and sham acupoint group. Subjects received resting state fMRI before acupuncture, after true (sham) acupuncture in each group. Analysis of changes in connectivity among the brain areas was performed using the brain functional connectivity method.Results: The right cerebrum temporal lobe was selected as the seed point to analyze the functional connectivity. It had a functional connectivity with right cerebrum superior frontal gyrus, limbic lobe cingulate gyrus and left cerebrum inferior temporal gyrus (BA 37), inferior parietal lobule compared by before vs. after acupuncture at LR3, and right cerebrum sub-lobar insula and left cerebrum middle frontal gyrus, medial frontal gyrus compared by true vs. sham acupuncture at LR3, and right cerebrum occipital lobe cuneus, occipital lobe sub-gyral, parietal lobe precuneus and left cerebellum anterior lobe culmen by acupuncture at LR3 vs. sham acupoint.Conclusion: Acupuncture at LR3 mainly specifically activated the brain functional network that participates in visual function, associative function, and emotion cognition, which are similar to the features on LR3 in tradition Chinese medicine. These brain areas constituted a neural network structure with specific functions that had specific reference values for the interpretation of the acupoint specificity of the Taichong acupoint.Keywords: acupuncture, Taichong(LR3), functional magnetic resonance imaging (fMRI), functional connectivit

    Distinct Bacterial Communities in Wet and Dry Seasons During a Seasonal Water Level Fluctuation in the Largest Freshwater Lake (Poyang Lake) in China

    Get PDF
    Water level fluctuations (WLFs) are an inherent feature of lake ecosystems and have been regarded as a pervasive pressure on lacustrine ecosystems globally due to anthropogenic activities and climate change. However, the impacts of WLFs on lake microbial communities is one of our knowledge gaps. Here, we used the high-throughput 16S rRNA gene sequencing approach to investigate the taxonomic and functional dynamics of bacterial communities in wet-season and dry-season of Poyang Lake (PYL) in China. The results showed that dry-season was enriched in total nitrogen (TN), nitrate (NO3-), ammonia (NH4+), and soluble reactive phosphorus (SRP), while wet-season was enriched in dissolved organic carbon (DOC) and total phosphorus (TP). Bacterial communities were distinct taxonomically and functionally in dry-season and wet-season and the nutrients especially P variation had a significant contribution to the seasonal variation of bacterial communities. Moreover, bacterial communities responded differently to nutrient dynamics in different seasons. DOC, NO3-, and SRP had strong influences on bacterial communities in dry-season while only TP in wet-season. Alpha-diversity, functional redundancy, taxonomic dissimilarities, and taxa niche width were higher in dry-season, while functional dissimilarities were higher in wet-season, suggesting that the bacterial communities were more taxonomically sensitive in dry-season while more functionally sensitive in wet-season. Bacterial communities were more efficient in nutrients utilization in wet-season and might have different nitrogen removal mechanisms in different seasons. Bacterial communities in wet-season had significantly higher relative abundance of denitrification genes but lower anammox genes than in dry-season. This study enriched our knowledge of the impacts of WLFs and seasonal dynamics of lake ecosystems. Given the increasingly pervasive pressure of WLFs on lake ecosystems worldwide, our findings have important implications for conservation and management of lake ecosystems

    Determining the macroinvertebrate community indicators and relevant environmental predictors of the Hun-Tai River Basin (Northeast China): A study based on community patterning

    Full text link
    [EN] It is essential to understand the patterning of biota and environmental influencing factors for proper rehabilitation and management at the river basin scale. The Hun-Tai River Basin was extensively sampled four times for macroinvertebrate community and environmental variables during one year. Self-Organizing Maps (SOMs) were used to reveal the aggregation patterns of the 355 samples. Three community types (i.e., clusters) were found (at the family level) based on the community composition, which showed a clearly gradient by combining them with the representative environmental variables: minimally impacted source area, intermediately anthropogenic impacted sites, and highly anthropogenic impacted downstream area, respectively. This gradient was corroborated by the decreasing trends in density and diversity of macroinvertebrates. Distance from source, total phosphorus and water temperature were identified as the most important variables that distinguished the delineated communities. In addition, the sampling season, substrate type, pH and the percentage of grassland were also identified as relevant variables. These results demonstrated that macroinvertebrates communities are structured in a hierarchical manner where geographic and water quality prevail over temporal (season) and habitat (substrate type) features at the basin scale. In addition, it implied that the local-scale environment variables affected macroinvertebrates under the longitudinal gradient of the geographical and anthropogenic pressure. More than one family was identified as the indicator for each type of community. Abundance contributed significantly for distinguishing the indicators, while Baetidae with higher density indicated minimally and intermediately impacted area and lower density indicated highly impacted area. Therefore, we suggested the use of abundance data in community patterning and classification, especially in the identification of the indicator taxa. (C) 2018 Elsevier B.V. All rights reserved.This work was supported by the National Natural Science Foundation of China (51779275, 41501204, 51479219) and the IWHR Research & Development Support Program (WE0145B532017).Zhang, M.; Muñoz Mas, R.; Martinez-Capel, F.; Qu, X.; Zhang, H.; Peng, W.; Liu, X. (2018). Determining the macroinvertebrate community indicators and relevant environmental predictors of the Hun-Tai River Basin (Northeast China): A study based on community patterning. The Science of The Total Environment. 634:749-759. https://doi.org/10.1016/j.scitotenv.2018.04.021S74975963

    High Sensitivity Refractometer Based on Reflective Smf-Small Diameter No Core Fiber Structure

    Get PDF
    A high sensitivity refractive index sensor based on a single mode-small diameter no core fiber structure is proposed. In this structure, a small diameter no core fiber (SDNCF) used as a sensor probe, was fusion spliced to the end face of a traditional single mode fiber (SMF) and the end face of the SDNCF was coated with a thin film of gold to provide reflective light. The influence of SDNCF diameter and length on the refractive index sensitivity of the sensor has been investigated by both simulations and experiments, where results show that the diameter of SDNCF has significant influence. However, SDNCF length has limited influence on the sensitivity. Experimental results show that a sensitivity of 327 nm/RIU (refractive index unit) has been achieved for refractive indices ranging from 1.33 to 1.38, which agrees well with the simulated results with a sensitivity of 349.5 nm/RIU at refractive indices ranging from 1.33 to 1.38

    Scale Robust Deep Oriented-text Detection Network

    Get PDF
    Abstract(#br)Text detection is a prerequisite of text recognition, and multi-oriented text detection is a hot topic recently. The existing multi-oriented text detection methods fall short when facing two issues: 1) text scales change in a wide range, and 2) there exists the foreground-background class imbalance. In this paper, we propose a scale-robust deep multi-oriented text-detection model, which not only has the efficiency of the one-stage deep detection model, but also has the comparable accuracy of the two-stage deep text-detection model. We design the feature refining block to fuse multi-scale context features for the purpose of keeping text detection in a higher-resolution feature map. Moreover, in order to mitigate the foreground-background class imbalance, Focal Loss is adopted to up weight the hard-classified samples. Our method is implemented on four benchmark text datasets: ICDAR2013, ICDAR2015, COCO-Text and MSRA-TD500. The experimental results demonstrate that our method is superior to the existing one-stage deep text-detection models and comparable to the state-of-the-art text detection methods
    corecore